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Abstract—A malarial infection is diagnosed and monitored
by screening microscope images of blood smears for parasite-
infected red blood cells. Millions of blood slides are manually
screened for parasites every year, which is a tedious and error-
prone process, and which largely depends on the expertise of
the microscopists. We have developed a software to perform this
task on a smartphone, using machine learning and image analysis
methods for counting infected red blood cells automatically. The
method we implemented first needs to detect and segment red
blood cells. However, the presence of white blood cells (WBCs)
contaminates the red blood cell detection and segmentation
process because WBCs can be miscounted as red blood cells
by automatic cell detection methods. As a result, a preprocessing
step for WBC elimination is essential. Our paper proposes a novel
method for white blood cell segmentation in microscopic images
of blood smears. First, a range filtering algorithm is used to
specify the location of white blood cells in the image following a
Chan-Vese level-set algorithm to estimate the boundaries of each
white blood cell present in the image. The proposed segmentation
algorithm is systematically tested on a database of more than
1300 thin blood smear images exhibiting approximately 1350
WBCs. We evaluate the performance of the proposed method for
the two WBC detection and WBC segmentation steps by compar-
ing the annotations provided by a human expert with the results
produced by the proposed algorithm. Our detection technique
achieves a 96.37% overall precision, 98.37% recall, and 97.36%
F1-score. The proposed segmentation method grants an overall
82.28% Jaccard Similarity Index. These results demonstrate that
our approach allows us to filter out WBCs, which significantly
improves the precision of the cell counts for malaria diagnosis.

I. INTRODUCTION

Microscopy is the main technique for malaria diagnosis.
Millions of blood slides are screened using microscopy every
year for diagnosing and monitoring malaria disease. An-
alyzing the huge volume of slides manually is extremely
labor intensive and subjective to some extent. Therefore,

developing a software for diagnosis of malaria greatly assists
with supplementing or even substituting the manual process.
The software that we developed runs on a standard Android
smartphone that is attached to a microscope by a low-cost
adapter. Utilizing the smartphone’s built-in camera, this soft-
ware captures the images of thin blood smear slides through
the eyepiece of the microscope. The smartphone application
performs an automatic screening of malaria parasites. The
first step of the method implemented in this application is to
detect and segment red blood cells. However, the presence of
white blood cells (WBCs) is adversely affecting the precision
of the red blood cell detection and segmentation procedure
since WBCs are often mistaken for red blood cells by the
implemented algorithm. Consequently, a preprocessing step
for WBC elimination is necessary. White blood cells, also
known as “Leukocytes” are nucleated cells in the blood that
protect the body against infection diseases. There are five
main types of WBCs: Neutrophils, Eosinophils, Basophils,
Lymphocytes, Monocytes. Fig. 1 shows the typical appearance
of these five categories in images of thin blood smears.
In microscopic images of thin blood smears, morphological
properties of the nucleus, the texture of the cytoplasm, and
the size and shape of different WBC types varies. Besides,
there may be an uneven illumination pattern introduced to the
image. The staining process may also result in a diverse range
of staining shades and so, the WBCs demonstrate different
staining shades in our set of blood smear images. Therefore,
segmenting WBCs in images of thin blood smears can be a
complex and challenging task.

Detection and segmentation of white blood cells in mi-
croscopic images of thin blood smears has been widely
studied. Many methods employing active contours [1], [2],
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(a) Neutrophils (b) Eosinophils (c) Basophils

(d) Lymphocytes (e) Monocytes

Fig. 1. Five main types of white blood cells: (a) Neutrophils, (b) Eosinophils, (c) Basophils, (d) Lymphocytes and (e) Monocytes
(http://www.uwosh.edu/med tech/what-is-elementary-hematology/white-blood-cells)

[3], color and feature extraction approaches [4], algorithms
based on fuzzy morphological operations [5] and clustering
techniques [6], [7] have been developed for the WBC seg-
mentation purpose. In particular, Hou et al. [8] proposed an
algorithm that performs WBC segmentation with BandMax
and spectral angle mapping as a preprocessing step to divide
the boundaries between the cells followed by an SVM (sup-
port vector machine) cell screening algorithm to segment the
hyperspectral cell images. Prinyakupt et al. [9] introduced a
technique for WBC segmentation comprising a preprocess-
ing step, nucleus segmentation and cell segmentation. The
segmentation algorithm combined thresholding, white blood
cells’ morphological properties in morphological operation
and ellipse curve fitting to segment the cells present in the
slide images, using the calibrated size of a real cell relative
to image resolution. Manik et al. [10] proposed a framework
for cell segmentation that followed an RGB-to-gray-scale
conversion followed by an adaptive histogram equalization and
binary conversion to acquire the binary mask of the image.
Afterwards, morphological operations such as hole filling and
image opening are executed to segment the WBCs in the
image, employing the corresponding binary mask. Dorini et
al. [11] implemented a novel method to segment the nucleus
and then the cytoplasm of each WBC. To segment the nucleus,

an image preprocessing step applying the self-dual multiscale
morphological toggle (SMMT) for contour regularization is
performed followed by a Watershed transform to estimate the
boundaries of the nucleus. The algorithm follows two different
schemes based on granulometric analysis and morphological
transformations to estimate the cytoplasm region. Zhang et
al. [12] demonstrated a nucleus and cytoplasm segmentation
method for the WBCs. Their segmentation algorithm combines
a color adjustment step with color space decomposition and
k-means clustering for segmentation. Li et al. [13] proposed
a dual-threshold method based on a strategic combination of
RGB and HSV color space for WBC segmentation. In this
algorithm, the contrast-stretched gray version of the image
and the H component image from the transformed HSV color
space are used in a dual-threshold method for determining
the optimal thresholds followed by the image thresholding
process. Then, the resultant thresholded image is denoised
employing mathematical morphology operations and median
filtering.

II. METHODOLOGY

In this work, we present a novel technique that successfully
performs detection and segmentation of WBCs. We follow
three main steps in this algorithm to fulfill the purpose of WBC
segmentation: a preprocessing step that extracts the region of
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Fig. 2. A sample microscopy slide image of a thin blood smear

interest (ROI), a cell detection step using a range filtering
method, and a cell segmentation step utilizing level-set active
contours. In the preprocessing step, the ROI in the image is
extracted. The cell detection step localizes any WBC present in
the image using a range- filtered version of the image. Finally,
in the cell segmentation step, the detected white blood cells
are segmented utilizing a level-set method.

A. ROI Detection

In the first step, we extract the ROI of a microscopy
slide image of a thin blood smear. A sample slide image is
presented in Fig. 2. The region of interest is the region of
the slide image that is actually visible through the eyepiece
of the microscope. In other words, in this step, the unwanted
black background is eliminated. First, the image is subsampled
to reduce the computational complexity. Then, the image is
converted to grayscale by removing the hue and saturation
information while maintaining the luminance. After this, the
binarized version of the image is derived by replacing all the
intensity values above a globally determined threshold with
ones and allocating all the other values to zeros. The global
threshold for binarization is derived using Otsu’s method. The
purpose of binarization is to acquire the binary mask of the
subsampled image, in which the ROI appears as a big white
blob. Finally, the portion of the image that has nonzero values
in the binarized mask is extracted and the remaining pixels are
discarded. As the result, the part of the image that contains the
visible cell region is extracted. Fig. 3 demonstrates the result
of this step.

B. WBC Detection Using Range Filtering

In the second step, any white blood cell present in the
extracted ROI from the previous step is detected using a range
filtering technique. With the use of a range filter, for each
pixel, the intensity value is replaced with the difference value
of maximum and minimum intensities within the range of the
filter. For example, for a range filter of size 3x3, the intensity
value of each pixel is determined as the difference of highest
and lowest intensity values in the 3x3 neighborhood of the

Fig. 3. The extracted ROI from the slide image in Fig. 2

Fig. 4. The green channel of the extracted ROI in Fig. 3

pixel. Range filtering performance resembles average filtering;
however, the edges are preserved in this case. Considering the
green channel of the extracted ROI, shown in Fig. 4, white
blood cells’ nuclei present relatively higher contrast with the
neighboring pixels compared to red blood cells. Therefore, at
the edges of these nuclei, the range-filtered image has higher
values compared to other parts of the image. In other words,
the range filtering highlights a nucleus’ edge pixels, and thus
provides us a proper tool to distinguish the corresponding
nuclei pixels from the rest of the extracted ROI. Fig. 5 presents
the range-filtered version of the extracted ROI. Since nucleus
edge pixels have comparatively higher intensity values, an
intensity thresholding draws out the edge pixels from the rest
of the image. The result is a binary mask with nucleus edge
pixels having values of one. A follow-up morphological filling
operation fills the empty space within the edge pixels resulting



Fig. 5. The range-filtered ROI

Fig. 6. The resultant binary mask with nuclei appearing as white blobs

in a binary mask, with approximations of nuclei appearing as
white blobs. These approximations represent partial WBCs.
Fig. 6 demonstrates the resultant binary mask.

C. WBC Segmentation Step Using Level-set Algorithm

The last step estimates the boundary pixels of the detected
WBCs employing the Chan-Vese level-set algorithm. The
Chan-Vese level-set, also known as “Active Contours without
Edges” is a model for active contours to detect objects in
an image employing techniques of curve evolution, Mumford-
Shah functional for segmentation and level sets [14]. The
detected partial WBCs present in the binary mask derived from
the previous step are used to segment the WBCs present in
the image employing the Chan-Vese algorithm. One cell at a
time, a mask is generated where only the nucleus boundary
pixels of the corresponding cell are white. In this mask, the

Fig. 7. The estimated WBC boundaries shown in green on the original slide
image.

initial contour is evolved outwards in the green channel of
the extracted ROI. The evolution of the Chan-Vese level-
set is terminated when it reaches the boundary pixels of the
corresponding WBC. The resultant curve is the estimated
boundary of the WBC. This process is repeated for all the
detected WBCs. The estimated boundaries are marked green
in the extracted ROI in Fig. 7.

III. RESULTS & DISCUSSION

A. Image Dataset

The dataset that is used in this work contains archived
thin blood smear images acquired from Chittagong Medical
College & Hospital in Bangladesh [15]. This set contains more
than 1300 images containing approximately 1350 WBCs. The
average number of WBCs in an image is 1.12. All images
are in RGB color space. The full set was acquired using
a smartphone mounted on a regular light microscope. Thus,
the visual region in the image is what is captured through
the microscope. The visual region extraction is taken care of
in the preprocessing step of the proposed algorithm. All of
the WBCs in the entire dataset are annotated manually by
an experienced slide reader using the Firefly annotation tool
(firefly.cs.missouri.edu).

B. Qualitative Results

Fig. 8 demonstrates the results of the segmentation step with
estimated WBC boundaries marked green in various image
slides from the dataset.

As shown, the algorithm is capable of segmenting distinct
types of WBCs, with diverse nucleus morphologies and cy-
toplasm textures and performs robustly to various staining
shades. The proposed technique can handle segmentation of
multiple WBCs in a single slide image. The proposed method
can also estimate WBC edge pixels even if the WBC is
touching red blood cells.
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Fig. 8. The segmentation results marked on various sample slide images



These results show the strength of the proposed algorithm in
segmenting WBCs with different shapes and sizes and diverse
staining shades. They also demonstrate the robustness of the
algorithm in handling various morphological properties of the
nucleus and cytoplasm textures.

C. Quantitative Results

We evaluate the two stages of our proposed method: the
WBC detection step and the WBC segmentation step. In order
to assess the detection algorithm, we estimate precision, recall
and F1-score metrics.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 measure = 2× Precision×Recall

Precision+Recall
(3)

The values for TP, FP and FN in equations (1) to (3) are
derived by comparing the result of the detection algorithm
with the WBC annotations. A detected WBC is counted as
TP if the detection is within the annotation boundary of the
corresponding WBC. Otherwise, it is counted as FP. If a WBC
is not detected at all, then that misdetection will be in the FN
category. In other words, the total number of annotated WBCs
can be considered as the sum of WBCs correctly detected
(TPs) and WBCs not recognized by the algorithm (FNs). Also,
we can express the total number of detected WBCs as the
sum of WBCs detected correctly (TPs) and detections made
incorrectly (FPs). The aforementioned metrics are calculated
for each image in the Bangladesh dataset. Each image is
evaluated separately by the calculation of these metrics. The
overall evaluation of our method on the entire Bangladesh
dataset is computed by averaging the evaluation of all images,
which results in 96.37% precision, 98.37% recall, and 97.36%
F1-score index.

To evaluate the third step of the proposed method, the
segmentation step, we gauge the algorithm with the Jaccard
Similarity Index and DICE Index metric.

Jaccard =
TP

TP + FP + FN
(4)

DICE = 2× TP

2TP + FP + FN
(5)

To compute the value of TP, FP and FN in equations (5)
and (6), the obtained segmentation results are compared to
the manual annotations of WBCs, pixel-wise. Any segmented
pixel belonging to the annotated WBC is considered a TP. If
a segmented pixel falls out of the annotated WBC bounds,
it is classified as FP. The pixels that belong to the annotated
WBC and are not segmented are counted as FNs. For one
slide image, the total number of pixels within the boundaries
of the annotated WBCs is equal to the sum of pixels correctly

TABLE I
QUANTITATIVE COMPARISON BETWEEN THE PROPOSED WBCS
DETECTION ALGORITHM AND THE COLOR-BASED K-MEANS

CLUSTERING TECHNIQUE

Metrics K-means Clustering(%) Proposed Algo.(%)
Precision 76.90 96.37

Recall 77.58 98.37
F1-Score 77.24 97.36

segmented (TPs) and pixels that are not considered in the
segmentation (FNs). In Fig. 9(b), the segmentation mask is
overlayed on a sample image (Fig. 9(a)). The TP, FP, and FN
pixels are shown as white pixels, green pixels, and pink pixels,
respectively.

The overall evaluation of the segmentation step of the
proposed algorithm on the entire Bangladesh dataset results
in a Jaccard Similarity Index of 82.28% and a DICE Index of
78.33%.

D. Comparison with a K-means Clustering Based Algorithm

Using a color-based k-means clustering algorithm for WBCs
detection is an alternative approach. For example, this ap-
proach can segment colors in the image using L*a*b color
space and k-means clustering. The cluster with the darkest
shade can the be chosen as the one containing WBCs, or
more specifically WBC nuclei. The logic behind this step
is that WBCs usually appear in a darker shade of purple
compared to other components in a blood smear image. Fig.
10 demonstrates this property in two examples of thin blood
smear images.

However, there can be a considerable number of cases in
which WBCs are not necessarily found in the cluster with
the darkest shade. Fig. 11 represents examples of blood smear
images in which WBCs appear in a lighter or the same shade
of purple compared with other components in the image.

This approach was tested on the entire Bangladesh dataset.
The results derived from this technique are compared with the
ones obtained from the proposed WBC detection algorithm in
Table I.

As shown, the results of the proposed algorithm are consid-
erably higher since the proposed approach performs robustly
to the shading of the images and instead takes the contrast
of pixel colors into account. In other words, the color-based
k-means clustering method and the rules defined for this
technique are dependent on the staining shades. Since there
are different shades of staining in the Bangladesh dataset, this
algorithm falls short for many cases. However, the proposed
algorithm is based on the contrast rather than the color of
WBCs.

IV. CONCLUSION

We introduce an algorithm that successfully detects white
blood cells in microscopic images of thin blood smears em-
ploying a range filtering approach. This algorithm can detect
different types of WBCs with various shades of staining. The
proposed algorithm accurately estimates the boundary pixels



(a) (b)

Fig. 9. (a) The segmentation results marked on a sample image, (b) The segmentation mask overlayed on the sample image, with TP, FP, and FN pixel
regions shown in white, green, and pink, respectively

(a) (b)

Fig. 10. Two examples of thin blood smear images and WBCs with high-contrast staining

(a) (b)

Fig. 11. Two examples of thin blood smear images and WBCs with low-contrast staining



of each cell using a level-set technique. The qualitative and
quantitative results demonstrate that our algorithm can detect
WBCs precisely in the first stage and can segment the detected
WBCs afterwards.
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